Utility of deep sea CO2 release experiments in understanding the biology of a high-CO2 ocean: Effects of hypercapnia on deep sea meiofauna

نویسندگان

  • James P. Barry
  • Kurt R. Buck
  • Chris Lovera
  • Linda Kuhnz
  • Patrick J. Whaling
چکیده

[1] Oceanic CO2 levels are expected to rise during the next 2 centuries to levels not seen for 10–150 million years by the uptake of atmospheric CO2 in surface waters or potentially through the disposal of waste CO2 in the deep sea. Changes in ocean chemistry caused by CO2 influx may have broad impacts on ocean ecosystems. Physiological processes animals use to cope with CO2-related stress are known, but the range of sensitivities and effects of changes in ocean chemistry on most ocean life remain unclear. We evaluate the effectiveness of various designs for in situ CO2 release experiments in producing stable perturbations in seawater chemistry over experimental seafloor plots, as is desirable for evaluating the CO2 sensitivities of deep sea animals. We also discuss results from a subset of these experiments on the impacts of hypercapnia on deep sea meiofauna, in the context of experimental designs. Five experiments off central California show that pH perturbations were greatest for experiments using ‘‘point source’’ CO2 pools surrounded by experimental plots. CO2 enclosure experiments with experimental plots positioned within a circular arrangement of CO2 pools had more moderate pH variation. The concentration of dissolution plumes from CO2 pools were related to the speed and turbulence of near-bottom currents, which influence CO2 dissolution and advection. Survival of meiofauna (nematodes, amoebae, euglenoid flagellates) was low after episodic severe hypercapnia but lower and variable where pH changes ranged from 0 to 0.2 pH units below normal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Co2 Injection Method “cosmos” for Co2 Ocean Storage

Ocean storage of CO2 was proposed by Marchetti as one of greenhouse gas control technologies, where CO2 is captured from flue gas of fossil fuels and injected into deep seafloor below the depth of 3500m to be sequestered from the atmosphere as shown in Fig. 1. In the last decade of the twenties century, there was a great progress in study on the ocean storage. Aya and his colleagues and Nishika...

متن کامل

Reversed deep-sea carbonate ion basin-gradient during Paleocene-Eocene Thermal Maximum

The Paleocene-Eocene Thermal Maximum (PETM, ∼ 55 Ma ago) was marked by widespread CaCO3 dissolution in deep-sea sediments, a process that has been attributed to massive release of carbon into the ocean-atmosphere system. The pattern of carbonate dissolution is key to reconstructing changes in deep sea carbonate chemistry and, ultimately, the rate, magnitude, and location of carbon input. Here w...

متن کامل

Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History

CO2 currently accumulating in the atmosphere permeates into ocean surface layers, where it may impact on marine animals in addition to effects caused by global warming. At the same time, several countries are developing scenarios for the disposal of anthropogenic CO2 in the worlds’ oceans, especially the deep sea. Elevated CO2 partial pressures (hypercapnia) will affect the physiology of water ...

متن کامل

Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

BACKGROUND As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. METHODOL...

متن کامل

CO2 threshold for millennial-scale oscillations in the climate system: implications for global warming scenarios

We present several equilibrium runs under varying atmospheric CO2 concentrations using the University of Victoria Earth System Climate Model (UVic ESCM). The model shows two very different responses: for CO2 concentrations of 400 ppm or lower, the system evolves into an equilibrium state. For CO2 concentrations of 440 ppm or higher, the system starts oscillating between a state with vigorous de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005